翻訳と辞書 |
Euler equations (fluid dynamics) : ウィキペディア英語版 | Euler equations (fluid dynamics)
In fluid dynamics, the Euler equations are a set of quasilinear hyperbolic equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. The equations represent Cauchy equations of conservation of mass (continuity), and balance of momentum and energy, and can be seen as particular Navier–Stokes equations with zero viscosity and zero thermal conductivity.〔see Toro, p. 24〕 In fact, Euler equations can be obtained by linearization of some more precise continuity equations like Navier-Stokes equations in a local equilibrium state given by a Maxwellian. The Euler equations can be applied to incompressible and to compressible flow – assuming the flow velocity is a solenoidal field, or using another appropriate energy equation respectively (the simplest form for Euler equations being the conservation of the specific entropy). Historically, only the incompressible equations have been derived by Euler. However, fluid dynamics literature often refers to the full set – including the energy equation – of the more general compressible equations together as "the Euler equations".〔Anderson, John D. (1995), Computational Fluid Dynamics, The Basics With Applications. ISBN 0-07-113210-4〕 From the mathematical point of view, Euler equations are notably hyperbolic conservation equations in the case without external field (i.e. in the limit of high Froude number). In fact, like any Cauchy equation, the Euler equations originally formulated in convective form (also called usually "Lagrangian form", but this name is not self-explanatory and historically wrong, so it will be avoided) can also be put in the "conservation form" (also called usually "Eulerian form", but also this name is not self-explanatory and is historically wrong, so it will be avoided here). The conservation form emphasizes the mathematical interpretation of the equations as conservation equations through a control volume fixed in space, and is the most important for these equations also from a numerical point of view. The convective form emphasizes changes to the state in a frame of reference moving with the fluid. ==History== The Euler equations first appeared in published form in Euler's article "Principes généraux du mouvement des fluides", published in ''Mémoires de l'Academie des Sciences de Berlin'' in 1757 (in this article Euler actually published only the ''general'' form of the continuity equation and the momentum equation;〔(E226 -- Principes generaux du mouvement des fluides )〕 the energy balance equation would be obtained a century later). They were among the first partial differential equations to be written down. At the time Euler published his work, the system of equations consisted of the momentum and continuity equations, and thus was underdetermined except in the case of an incompressible fluid. An additional equation, which was later to be called the adiabatic condition, was supplied by Pierre-Simon Laplace in 1816. During the second half of the 19th century, it was found that the equation related to the balance of energy must at all times be kept, while the adiabatic condition is a consequence of the fundamental laws in the case of smooth solutions. With the discovery of the special theory of relativity, the concepts of energy density, momentum density, and stress were unified into the concept of the stress–energy tensor, and energy and momentum were likewise unified into a single concept, the energy–momentum vector.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Euler equations (fluid dynamics)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|